INFORME FINAL:
DIGITALIZACIÓN Y MODELADO 3D DE LA
BIODIVERSIDAD PARA MEJORAR EL ACCESO AL
CONOCIMIENTO VISUAL EN LA REGIÓN AYACUCHO

ESTADO DE LAS REVISIONES

<table>
<thead>
<tr>
<th>Índice De Revisión</th>
<th>Naturaleza de la revisión</th>
<th>Resolución</th>
<th>Fecha de entrada en vigor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Creación</td>
<td></td>
<td>05/12/17</td>
</tr>
</tbody>
</table>

REVISADO POR: DIRECCIÓN DE INVESTIGACIÓN 03/12/17

APROBADO POR: CONSEJO UNIVERSITARIO 05/12/17
1. **Línea de investigación:** Emprendimiento e innovación Tecnológico

2. **Nombre del proyecto:** Digitalización y modelado 3D de la Biodiversidad para mejorar el acceso al conocimiento visual en la Región Ayacucho.

3. **Fecha de inicio y término del proyecto:** diciembre 2016/diciembre 2017

4. **Código de Sede o Filial:** SL01

5. **Datos del investigador principal y los coinvestigadores:**

<table>
<thead>
<tr>
<th>Apellidos y nombres</th>
<th>Documento de Identidad</th>
<th>Facultad</th>
<th>Programa de Estudio</th>
<th>Horas de dedicación semanal al proyecto</th>
<th>Fecha de vinculación al proyecto</th>
<th>Fecha de desvinculación al proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jerome Vincent Dumas</td>
<td>001352567</td>
<td>Facultad de Ciencias Tecnológicas e Ingeniería</td>
<td>Escuela Académico Profesional de Ingeniería de Sistemas y Tecnológicas</td>
<td>48 horas</td>
<td>diciembre 2016</td>
<td>diciembre 2017</td>
</tr>
</tbody>
</table>

6. **Datos de los colaboradores o estudiantes vinculados al proyecto:**

<table>
<thead>
<tr>
<th>Apellidos y nombres</th>
<th>Documento de Identidad</th>
<th>Facultad</th>
<th>Programa de Estudio</th>
<th>Horas de dedicación semanal al proyecto</th>
<th>Fecha de vinculación al proyecto</th>
<th>Fecha de desvinculación al proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kay Denise Jeri Lagos</td>
<td>42210032</td>
<td>Facultad de Ciencias Tecnológicas e Ingeniería</td>
<td>Escuela académica Profesional de Ingeniería Comercial y Negocios Internacionales</td>
<td>48 horas</td>
<td>diciembre 2016</td>
<td>diciembre 2017</td>
</tr>
</tbody>
</table>

7. **Resumen**

Este proyecto incorpora contenido acerca del método utilizado para la obtención de modelos 3D de manera digital a partir de la fotogrametría y procesamiento de imágenes para la obtención del modelo 3D de la biodiversidad de la región Ayacucho.

Con esta metodología de digitalización 3D y procesamiento de información de biodiversidad podremos obtener un modelo 3D el cual nos facilitará el trabajo de
investigación, ahorrando el tiempo con respecto al material de estudio lo cual no se volverá perecedero, quedando así demostrado que si es posible con el uso de esta metodología mejorar el aprovechamiento de la biodiversidad que posee la región Ayacucho.

Cabe mencionar que la metodología aplicada en este trabajo, fotogrametría aplicada en la digitalización 3D, surge como una alternativa para la generación de estos modelos 3D con buenos resultados, además reúne ciertos aspectos a tomar en cuenta como: iluminación del espacio de trabajo, número de captura de fotos, ángulo de la toma de imagen, calidad de la imagen, entre otros.

La elaboración de las imágenes 3D de la biodiversidad de Ayacuchana consta de un banco de fotos de 6 especies, 4 especies de flora y 2 especies de fauna, para el caso de la especie de fauna se apoyó en animales disecados - dado que el movimiento de un animal vivo dificulta la digitalización - el cual serán procesados en un software de procesamiento de imágenes para muestra de imágenes en 3d en cuya lleva por nombre “Autodesk Remake.” Y para la edición del modelo para su posterior impresión se hizo el uso de la herramienta 3D Builder.

8. Introducción

La digitalización 3D en la actualidad se encuentra presente en diversas aplicaciones ayudando a la realización de proyectos de diversas magnitudes, desde la digitalización de una moneda hasta la digitalización de algún objeto de inmenso tamaño.

Esta metodología de digitalización 3D, ha tenido alcances notorios en el mundo de la automotriz, para el diseño de piezas, la asistencia médica, la educación, entretenimiento, e incluso en la conservación de obras de arte y piezas arquitectónicas de mucho valor.

Por lo cual este informe es de gran aporte a la generación de capacidad nacional y regional para la caracterización de componentes de biodiversidad para los investigadores lo cual, el hecho de tener su objeto de estudio en una forma digitalizada facilita su labor al
momento de aplicar maniobras bruscas, dado que su objeto de estudio original no corre riesgo alguno, solo su forma digitalizada.

Siendo la ciudad de Huamanga fuente de inspiración para distintos trabajos de investigación, la digitalización e impresión 3D es un gran medio para seguir contribuyendo al conocimiento, conservación y uso de la biodiversidad vegetal y animal de la región Ayacucho.

9. Justificación

- **Justificación Económica**: Los productos finales de este proyecto permitirán contar con un instrumento fácilmente masificable y que pueda ponerse a disposición a través de internet, que permita a cualquier persona poder acceder a información de manera visual en 3D, además las herramientas utilizadas en la ejecución del proyecto son de bajo costo con respecto a otras permiten desarrollar el trabajo con resultados aceptables.

- **Justificación Social**: Este proyecto de investigación fomentará que, a partir de la digitalización y generación de modelos 3D de la biodiversidad de Ayacucho, más personas podrán tener acceso a esta información, dado que el objeto muestra solo está disponible de manera individual (una muestra por persona), pues ahora el modelo 3D se podrá expandir, logrando ser visualizados por más usuarios, fomentando el uso y acceso a información y generando educación social.

- **Justificación Ambiental**: La masificación de estos modelos 3D de la biodiversidad debería permitir aprovechar responsablemente el potencial de la biodiversidad Ayacuchana, y no se pierdan por desconocimiento o falta de acceso hacia ella.

- **Justificación Teórica**: Este proyecto aplicará los conceptos y fundamentos de fotogrametría, técnica utilizada para la generación de modelos cartográficos en 3D y que son utilizados en la mayoría de los trabajos de levantamiento de modelos 3D de
diferentes zonas terrestres, además esta técnica permite y es compatible con la mayoría de los recursos informáticos que posee la Institución.

- **Justificación Metodológica**: Este proyecto, sigue las recomendaciones según la revisión bibliográfica en cuanto a las técnicas y recomendaciones indagadas, pues garantizan la ejecución y uso apropiado de las técnicas aplicadas en la metodología. De esta forma, se garantiza el cumplimiento de los objetivos y los resultados al final del proyecto, y su validación con los usuarios finales interesados en la digitalización y modelado 3D de la biodiversidad de la región de Ayacucho.

10. Antecedentes

Antecedentes del problema o revisión bibliográfica adecuada y suficiente en el área científica en que se ubica el problema. Se ha indagado por experiencias parecidas a nivel internacional y nacional, se ha considerado relevante presentar lo siguiente:

- **Bordignon, Iglesias & Hann (2018)**, en su libro titulado “Diseño e impresión de objetos 3D”, explican a modo de guía los conceptos claves relacionados a la implementación de esta tecnología, y las recomendaciones técnicas a tener en cuenta para su aplicación, a fin de ayudar de forma práctica y sencilla a instituciones interesadas.

- **Saorín et al. (2016)**, en el artículo titulado “Creación, visualización e impresión 3D de colecciones online de modelos educativos tridimensionales con tecnologías de bajo coste. Caso práctico del patrimonio fósil marino de Canarias”, describen la experiencia realizada al digitalizar cerca de 18 fósiles con tecnología 3D, como material educativo para utilizarlo en medios virtuales dirigido a universitarios, y si se desea, mencionan el proceso para la impresión del objeto en cuestión.

- **Morón (2018)**, en la tesis titulada “Metodología de trabajo conjunto de escaneado e impresión 3D”, detalla los resultados de experimentación al implementar el escaneado para el modelado e impresión en 3D, a fin de encontrar una metodología óptima para el uso de dicha tecnología, a la vez, de mencionar los factores que influyen al momento
de aplicar este método, las características del equipamiento y respectivas recomendaciones técnicas.

- **Berchon & LuyT (2014)**, en el libro titulado “L’ impression 3D”, profundizan los concepto sobre la impresión en 3D, mencionando las principales aplicaciones (principalmente en la industria), los diversos materiales que se pueden usar, y las fases que sigue dicha impresión, así también da una lista de las principales impresoras y los criterios a tener en consideración, teniendo como finalidad proveer una guía sencilla para todo tipo de usuario interesado.

- **Ortiz (2018)**, en el artículo titulado “Digitalización e impresión 3D para la reconstrucción de pérdidas volumétricas en un modelo anatómico de cera del siglo XVIII”, destaca la importancia de un material científico-médico de cera que se encontraba con evidente deterioro por el paso de los años como un patrimonio que debe ser preservado, para lo cual explica el desarrollo para la reestructuración que se hizo de dicho objeto, con el propósito de que siga siendo útil para el aprendizaje del cuerpo humano a la ciencia médica.

- **Ortiz & del Pino (2015)**, en el artículo titulado “Digitalización 3D automática con láser escáner, fotogrametría y videogrametría. El caso práctico del Templo de Diana (Mérida)”, describen el proceso que siguieron para documentar gráficamente un patrimonio histórico, comparando el uso de una técnica de modelado 3D, un software y un escáner, considerando al final de la experiencia una notable diferencia entre una y otra técnica. Se indica que esta investigación tuvo como fin mostrar el potencial de estas tecnologías como medio para promover el patrimonio a través de restos arqueológicos, que pueden perdurar digitalmente en el transcurso del tiempo sin perder su arquitectura.

11. Objetivos

11.1 Objetivo general
Digitalizar y generar modelos de ejemplares de la Biodiversidad en 3D para mejorar el acceso al conocimiento visual en la Región Ayacucho.

11.2 Objetivos específicos:

- Identificar requerimientos funcionales.
- Identificar la metodología de digitalización a emplear.
- Procesar las imágenes para la realización del modelo 3D.
- Generar modelos 3D de los ejemplares de 6 especies de la Biodiversidad de Ayacucho.
- Difundir y transferir el resultado de los productos del proyecto.

12. Métodos de Investigación.

Consideramos que este trabajo comprendió 2 métodos principales, la primera relacionada a la generación de un banco de imágenes y la segunda a la generación del modelo 3D.

- **Primer Método:** comprendió la generación de un banco de imágenes de la biodiversidad vegetal y biodiversidad animal de la región Ayacucho, para la realización de este método se tuvo en cuenta 4 factores importantes:

 1. **Fotos:** para la digitalización del objeto se han realizado una serie de tomas fotográficas en un intervalo de 20 a 50 fotos para cada modelo a escanear, el tener más tomas fotográficas permite mejor resultado en el objeto 3D a conseguir, debido a que posibilita al software a tener más detalles en cuanto a textura y forma del objeto.

 2. **Ángulo:** todas las fotos tomadas con el dispositivo Smartphone deben tratar de mantenerse en el mismo ángulo, para una mejor precisión y procesado de la imagen para la obtención del modelo 3D.
3. **Calidad de la imagen:** la calidad de las fotos debe ser la óptima posible es decir de alta resolución, esto es un factor clave al momento de aplicar la fotogrametría debido a que nos proporcionará un resultado con mejores detalles y texturas.

4. **Iluminación:** la iluminación es un factor clave y fundamental para una buena digitalización 3D, para ello se ha previsto hacer las tomas fotográficas en un ambiente bien iluminado, dado que el dispositivo con el que se ha trabajado no proporciona luz propia.

- **Segundo Método:** Comprende un proceso de generación del modelo 3D a partir de las fotos tomadas de la muestra de cada especie seleccionada, para la realización del segundo método se tuvo en cuenta la siguiente técnica y aspectos:

 1. **Fotogrametría:** La fotogrametría es una técnica que nos permite cartografiar elementos de la realidad en 3D, procesando imágenes fotográficas digitales.

 2. **Software:** la elección del software para la generación de los modelos 3D y posterior impresión es de suma importancia, dado que se debe tener en cuenta la compatibilidad del software y el formato de fotografías a procesar, así como el tipo de archivo al término de la generación del modelo 3D, en este caso se hizo huso del software Autodesk Remake, nos brindó el procesamiento para la obtención del modelo 3D y para la elaboración de la pieza a imprimir se optó por 3D Builder.

Población y muestra

- **Población:** la biodiversidad vegetal y biodiversidad animal de la ciudad de Huamanga en la Región Ayacucho

- **Muestra:** Se aplicará la metodología para la digitalización en 4 especies vegetales y 2 especies animales, se tendrán en cuenta la captura de un promedio de entre 30 a 50 imágenes por especie para su posterior selección de imágenes y procesamiento.
13. Cronograma (fecha de inicio y término)

Fecha de inicio: diciembre 2016
Fecha de término: diciembre 2017

Diagrama de Gantt, referencial a la naturaleza del proyecto (ver Anexo)

14. Presupuesto ejecutado (soles) y fuentes de financiamiento

<table>
<thead>
<tr>
<th>N.°</th>
<th>Partida</th>
<th>Monto en soles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pasajes</td>
<td>1000.00</td>
</tr>
<tr>
<td>2</td>
<td>Viáticos</td>
<td>700.00</td>
</tr>
<tr>
<td>3</td>
<td>Materiales</td>
<td>1000.00</td>
</tr>
<tr>
<td>4</td>
<td>Herramientas</td>
<td>3000.00</td>
</tr>
<tr>
<td>5</td>
<td>Recursos Humanos</td>
<td>4500.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>S/ 10 200.00</td>
</tr>
</tbody>
</table>

15. Resultados

El resultado del trabajo de investigación concluyó en la generación de un banco de imágenes para la realización de Modelo 3D de la biodiversidad de la región Ayacucho, además de ello se generó los modelos 3D de las especies de biodiversidad que a la vez sirven como una herramienta importante para la manipulación y estudio de objetos sin el riesgo de comprometer el objeto original.

16. Discusión

La generación de estos modelos 3D de la Biodiversidad que posee la región de Ayacucho tiene mucha relevancia en el tema de estudio de cada especie, dado que al mismo tiempo abarca la educación ambiental en el contexto virtual.

La metodología aplicada en la ejecución del proyecto de investigación permitió tener resultados aceptables, se debe tener en cuenta todo detalle explicado en la metodología, ya que ello asegura el cumplimiento y buen resultado a obtener.
Por otra parte, este trabajo permitió comprobar que la digitalización y generación de modelos 3D de la biodiversidad de Ayacucho permite mejorar el acceso a información visual de cada especie seleccionada, permitiendo así la masificación de la información en formato 3D, sirviendo como contenido educativo a Educadores y alumnos de distintas áreas e interesados en el tema.

17. Conclusiones

Al término de la ejecución del proyecto de investigación podemos llegar a la siguiente conclusión:

- La fotogrametría aplicada en la generación de modelos 3D es una metodología que requiere de mucho cuidado y empeño al momento de la obtención de las fotos, dado las condiciones que requiere para un buen resultado y elaboración del modelo 3D.

- La obtención de modelos 3D a través de la digitalización proporciona una nueva herramienta tanto para investigadores como para educadores, para el desarrollo de sus actividades de conocimiento.

- La digitalización 3D para biodiversidad es un proceso importante para la conservación de modelos vegetales y animales, de tal manera que pueda servir para futuros estudios.

- El aporte de la digitalización 3D es de gran ayuda al investigador dado el hecho de tener su objeto de estudio en una forma digitalizada, facilita su labor al momento de aplicar maniobras bruscas, dado que su objeto de estudio original no corre riesgo alguno, solo su forma digitalizada.

- La digitalización 3D, tiene mucha importancia de su aplicación en la biodiversidad Ayacuchana dado que ha tenido alcances notorios en el mundo de la automatriz, para el diseño de piezas, la asistencia médica, la educación, entretenimiento, e
incluso en la conservación de obras de arte y piezas arquitectónicas de mucho valor.

- Se lograron generar un banco de imágenes con un total de 192 ejemplares de las 6 especies entre vegetal y animal digitalizadas.

- Se logró realizar el procesamiento y el modelado en 3D de cada especie digitalizada para su posterior impresión en 3D.

18. Productos y difusión de resultados

Los productos resultantes del Proyecto de Investigación: “Digitalización y modelado 3D de la Biodiversidad para mejorar el acceso al conocimiento visual en la Región Ayacucho” resultó en lo siguiente:

1. Elaboración de un banco de Imágenes de 6 especies entre Biodiversidad Vegetal y Biodiversidad Animal que comprende un promedio de 30 a 50 imágenes por cada especie.

2. Elaboración de 6 modelos digitales en 3D para su posterior impresión.

- Berchon, M., & Luyt, B. (2014). L’ impression 3D.

20. Anexos

Elaborar Matriz de Resumen del Proyecto de Investigación con resultados obtenidos

Instrumento de investigación (si aplica)

Otros (evidencias de los productos y difusión de resultados)

<table>
<thead>
<tr>
<th>Línea de Investigación</th>
<th>Nombre del proyecto</th>
<th>Objetivos generales</th>
<th>Objetivos específicos</th>
<th>Nombre del investigador principal, co-investigador y colaboradores</th>
<th>Registrado en C9 - UDAFF</th>
<th>Sede o Local</th>
<th>Cronograma (dd/mm/aa)</th>
<th>Presupuesto ejercido (soles)</th>
<th>Fuente de financiamiento</th>
<th>Resultados obtenidos</th>
<th>Productos y difusión</th>
</tr>
</thead>
</table>
| Emprendimiento e innovación Tecnológica | Digitalización y modelado 3D de la Biodiversidad para mejorar el acceso al conocimiento visual en la Región Ayacucho | Digitalización y generar modelos de ejemplares de la Biodiversidad en 3D de la región Ayacucho. | Identificar requerimientos funcionales. Identificar la metodología de digitalización a emplear. Procesar las imágenes. | 1. Jerome Vincent Dumas 2. Kay Denise Jeri Lagos | Universidad de Ayacucho Federico Froebel: Distritos de Chuschi, Quinua y Acosvinchos | Setiembre 2018 | Marzo 2019 | s/ 10200.00 | Universidad de Ayacucho Federico Froebel | El resultado del trabajo de investigación concluyó en la generación de un banco de imágenes para la realización de Modelo 3D de la biodiversidad de la región Ayacucho, además de ello se generó los modelos 3D de las especies de biodiversidad que a la vez sirven para el reconocimiento de una gran variedad de especies. | 1. Elaboración de un banco de imágenes de 6 especies entre Biodiversidad Vegetal y Biodiversidad Animal que comprende un promedio de 30 a 50 imágenes por cada especie. 2. Elaboración de 6 modelos digitales en 3D
imagen es para la realización del modelo 3D.

- Generar modelos 3D de los ejemplares de 6 especies de la Biodiversidad de...

cómo una herramienta importante para la manipulación y estudio de objetos sin el riesgo de comprometer el objeto original. para su posterior impresión.
Ayacucho.

Difundir y transferir el resultado de los productos del proyecto.
Cronograma de Actividades:

<table>
<thead>
<tr>
<th>Actividades</th>
<th>Tareas</th>
<th>Semanas</th>
<th>Responsables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levantamiento de Información:</td>
<td>- Identificación de las especies a trabajar</td>
<td>Octubre</td>
<td>Investigador Principal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Identificación de Metodología para digitalización 3D.</td>
<td></td>
<td>Investigador Principal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asistente investigación</td>
</tr>
<tr>
<td></td>
<td>- Identificación y definición de Materiales Herramienta de trabajo.</td>
<td></td>
<td>Asistente Programador</td>
</tr>
<tr>
<td></td>
<td>Elaboración de primer informe de avance</td>
<td></td>
<td>Investigador Principal</td>
</tr>
<tr>
<td>Elaboración, Selección y</td>
<td>- Elaboración de banco de imágenes para digitalización.</td>
<td></td>
<td>Asistente Programador</td>
</tr>
</tbody>
</table>

X: Semana en la que la tarea se realiza
<table>
<thead>
<tr>
<th>Procesamiento de digitalización</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Selección de imágenes aptas para el procesamiento de digitalización.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Procesamiento para generación de Modelos 3D.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaboración de segundo Informe de avance</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desarrollo de la Aplicación</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorporación de Retroalimentación</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Segundo Procesamiento de para generación de modelos 3D.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Generación de Modelo 3D de las 6 especies de la biodiversidad.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Preparación de Modelo 3D para posterior impresión en 3D.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Presentación de Resultados</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Elaboración de Informe final</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- Asistente Programador
- Investigador Principal
- Asistente Programador
PLANTA 01: TRONCO DE ÁRBOLE

Para la elaboración del modelo 3D se han realizado 36 tomas de fotografía, la cual fueron procesadas por el software Autodesk Remake para luego ser editado con la herramienta 3D Builder. A continuación se muestra el modelo 3D obtenido en el procesamiento y un collage de fotos utilizadas para la elaboración de la misma, además del modelo 3D para imprimir.

Imagen 01: Resultado de digitalización de tronco de árbol

Imagen 02: Mesh de texturas para el modelo 3D del tronco de árbol
Imagen 03: Modelo 3D del tronco del árbol editado en 3D builder para imprimir
Imagen 04: Collage de algunas fotos tomadas para la elaboración del modelo 3D del tronco del árbol.
<table>
<thead>
<tr>
<th>Código</th>
<th>Versión</th>
<th>Fecha de creación</th>
<th>Índice de actualización</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI-IF-01</td>
<td>2017-01.0</td>
<td>05/12/17</td>
<td>0</td>
</tr>
</tbody>
</table>
PLANTA 02: TRONCO DE UNA PALMERA 1.

Para la elaboración del modelo 3D se han realizado 26 tomas de fotografía, la cual fueron procesadas por el software de Autodesk Remake, para luego ser editado con la herramienta 3D Builder, a continuación se muestra el modelo 3D obtenido en el procesamiento y un collage de fotos utilizadas para la elaboración de la misma, además del modelo 3D para imprimir.

Imagen 05: Resultado de digitalización 3D, tronco de una palmera 1.

Imagen 06: Mesh de texturas generado para el modelo 3D del tronco de palmera 1.
Imagen 07: Modelo 3D del tronco de palmera 1 editado en 3d Builder para imprimir.
PLANTA 03: TRONCO DE UNA PALMERA 2

Para la elaboración del modelo 3D se han realizado 24 tomas de fotografía y la cual serán procesadas por el software Autodesk Remake, a continuación se muestra modelo 3D obtenido en el primer procesamiento y un collage de fotos utilizadas para la elaboración de la misma.

Imagen 10: Mosa de texturas generado para el modelo 3D del tronco de palmera 2.

Imagen 09: Resultado de digitalización 3D, tronco de palmera 2.
Imagen 08: Collage de algunas fotos tomadas para la elaboración del modelo 3D del tronco de Palmera 1.

Imagen 11: Modelo 3D del tronco de palmera 2 editado en 3D Builder para imprimir.
Imagen 12: Colección de algunas fotos tomadas para la elaboración del modelo 3D del tronco de palmera 2.
PLANTA 04: TRONCO DE UN BAMBÚ.

Para la elaboración del modelo 3D se han realizado 19 tomas de fotografía y la cual serán procesadas por el software Autodesk Remake, a continuación se muestra modelo 3D obtenido en el primer procesamiento y un collage de fotos utilizadas para la elaboración de la misma.

![Imagen 13: Resultado de digitalización de bambú](image13)

![Imagen 14: Mesa de texturas generado para el modelo 3D del bambú](image14)